
Appendix 2.1

1. Drawing a continuous function. From a geometric point of view,
a function is continuous on an interval if you can “draw it’s graph
without lifting your pencil from the paper”. For, if you have to lift
your pencil from the graph there has to be a “jump” in the graph. At
that point the function is not continuous (the limits of the function
as you approach the jump from the right and from the left, if they
exist, will be different). But be careful, any curve you can draw will
be ‘smooth’, except for a finite number of corners. Such a function
will be differentiable except at the corners. Yet there exist continuous
functions that are differentiable nowhere! They would be impossible to
draw.

2. By previous results on Limits all the following functions are continuous
on R:

f1(x) =

{

ex−1
x

if x 6= 0

1 if x = 0.
f2(x) =

{

sin θ
θ

if θ 6= 0

1 if θ = 0.

f3(x) =

{

cos θ−1
θ

if θ 6= 0

0 if θ = 0.
f4(x) =

{

cos θ−1

θ2
if θ 6= 0

−1

2
if θ = 0.

f5(x) =

{

ex−1−x
x2 if x 6= 0

1

2
if x = 0.

3. Rational and irrational numbers in an interval. In lectures we
used the result that in any interval (a, b) we can find a rational number
and we can also find an irrational number.

Proof Let ℓ = b − a be the length of the interval. Choose n ∈ N so
large that 2−n < ℓ.

Assume for the sake of a contradiction that for no m ∈ Z do we have
m/2n ∈ (a, b). This means there exists p ∈ N for which

p

2n
≤ a < b ≤ p+ 1

2n
.

(In fact p = max {m ∈ Z : m ≤ a2n} .) Then, writing
p

2n
≤ a as − a ≤ − p

2n
,
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we find that

ℓ = b− a ≤ p+ 1

2n
− p

2n
=

1

2n
< ℓ.

The final result, a strict inequality ℓ < ℓ, is a contraction, and so
our assumption is false, and so there does exist m ∈ Z for which the
rational number r = m/2n lies in (a, b) for some m ∈ N.

To find an irrational number do the above for the interval
(

a/
√
2, b/

√
2
)

to find a rational r0 in this interval. You can then check that r0
√
2 is

an irrational number lying in (a, b) . �

4. Example 2.1.16 Show that the function g : R→ R given by

g(x) =

{

sin
(π

x

)

if x 6= 0,

0 if x = 0,

is not continuous at x = 0.

Solution Assume that g is continuous at x = 0. Then

lim
x→0

sin
(π

x

)

= g(0) = 0.

In particular this means the limit exists. Yet from a Problem Sheet we
know that limx→0 sin (π/x) does not exist. This contradiction means
our assumption is false and so f is not continuous at 0. �

Note that there is, in fact, no value for g(0) that would make the
function continuous at x = 0.

5. Example 2.1.17 If

f(x) =

{

1 if x is rational

0 if x is irrational,

and a /∈ Q show that f is not continuous at a.

Solution Assume f is continuous at a.

Choose ε = 1/2 in the definition of continuity to find δ > 0 such that
|x− a| < δ implies |f(x)− f(a)| < 1/2.

But a /∈ Q implies f (a) = 0 while in any interval, such as (a, a+ δ) we
can find a rational x0 for which f (x0) = 1. Thus

1

2
> |f(x0)− f(a)| = |1− 0| = 1.
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Contradiction, so our assumption is false. Thus f is not continuous at
a. �

6. Product and Quotient Rules for continuous functions. Assume
that f and g are continuous at a ∈ R. This means that limx→a f (x) =
f (a) and limx→a g (x) = g (a). For the Product Rule

lim
x→a

(fg) (x) = lim
x→a

(f(x) g(x)) from definition of fg,

= lim
x→a

f(x) lim
x→a

g(x) from Product Rule for limits,

= f(a) g(a) = (fg) (a) .

For the Quotient Rule, we have to also assume that g(a) 6= 0. Then

lim
x→a

(f/g) (x) = lim
x→a

(f(x)/g(x)) from definition of f/g,

= lim
x→a

f(x)/ lim
x→a

g(x) from Quotient Rule for limits,

= f(a)/g(a) = (f/g) (a) .

In applying the Product and Quotient Rules for limits we should have
observed that they were allowable since the individual limits, limx→a f(x)
and limx→a g(x) exist, and is non-zero in the case of the Quotient Rule.

7. Interchanging a limit with other operations. The Composite
Rule for functions in the form

lim
x→a

f(g(x)) = f
(

lim
x→a

g(x)
)

is an example of a whole class of results in Mathematical Analysis
looking at when a limit can be taken inside a function, or an operation
such as summation or integration.

For example under what conditions on the functions fn(x) can we say

lim
x→a

∞
∑

n=1

fn(x) =
∞
∑

n=1

lim
x→a

fn(x)?

The important point here is it is an infinite summation. By repeated
application of the Sum Rule above we know this result holds for finite
summations.
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For a function of two variables under what conditions can we say

lim
x→a

∫

∞

−∞

f(x, t) dt =

∫

∞

−∞

lim
x→a

f(x, t) dt?

Again for a function of two variables under what conditions can we
interchange limits as in

lim
x→a

lim
t→b

f(x, t) = lim
t→b

lim
x→a

f(x, t)?

Unfortunately we cannot answer these questions in this course.

8. Composition rule for limits. I have missed out another Composition
result, one for limits.

Assume limx→a g(x) exists, equal to L say. Assume not that f is con-
tinuous at L but only that limy→L f(y) exists, equal to M say. What
can be said of limx→a (f ◦ g) (x)? Is it equal to M?

There is a possible problem, for though the limit limy→L f(y) exists, the
value f(L) may not. So in examining (f ◦ g) (x) = f(g(x)) we would
not want g(x) = L for x close to a.

Theorem 2.1.18 Assume limx→a g(x) = L exists and there exists a

deleted neighbourhood of a on which g(x) 6= L. Assume limy→L f (y) =
M exists. Then limx→a (f ◦ g) (x) exists with value M.

Proof By assumption there exists δ0 > 0 such that if 0 < |x− a| < δ0
then g(x) 6= L or, in a form appropriate for us,

0 < |g(x)− L| . (6)

Let ε > 0 be given. Look at f first to find δ1 > 0 such that

0 < |y − L| < δ1 =⇒ |f(y)−M | < ε. (7)

Take ε = δ1 in the definition of limx→a g(x) = L to find δ2 > 0 such
that

0 < |x− a| < δ2 =⇒ |g(x)− L| < δ1. (8)

Choose δ = min (δ0, δ2) and assume 0 < |x− a| < δ. Then we have
both
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• 0 < |g(x)− L| by (6) and

• |g(x)− L| < δ1 by (8).

Combine to get 0 < |g(x)− L| < δ1. But then this implies |f(g(x))−M | <
ε by (7) with y = g(x). This verifies the definition of limx→a (f ◦ g) (x) =
M. �

If it is not the case that there exists a deleted neighbourhood of a on
which g(x) 6= L then f (L) has to be defined and it can be shown
that if limx→a (f ◦ g) (x) exists then limx→a (f ◦ g) (x) = f(L). But
we need some condition such as f is continuous at L to deduce that
limx→a (f ◦ g) (x) exists.
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